Open Gromov-Witten Invariants of Toric Calabi-Yau 3-Folds (1103.0693v2)
Abstract: We present a proof of the mirror conjecture of Aganagic-Vafa [arXiv:hep-th/0012041] and Aganagic-Klemm-Vafa [arXiv:hep-th/0105045] on disk enumeration in toric Calabi-Yau 3-folds for all smooth semi-projective toric Calabi-Yau 3-folds. We consider both inner and outer branes, at arbitrary framing. In particular, we recover previous results on the conjecture for (i) an inner brane at zero framing in the total space of the canonical line bundle of the projective plane (Graber-Zaslow [arXiv:hep-th/0109075]), (ii) an outer brane at arbitrary framing in the resolved conifold (Zhou [arXiv:1001.0447]), and (iii) an outer brane at zero framing in the total space of the canonical line bundle of the projective plane (Brini [arXiv:1102.0281, Section 5.3]).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.