Papers
Topics
Authors
Recent
2000 character limit reached

Gross fibrations, SYZ mirror symmetry, and open Gromov-Witten invariants for toric Calabi-Yau orbifolds

Published 3 Jun 2013 in math.SG, math-ph, math.AG, and math.MP | (1306.0437v4)

Abstract: For a toric Calabi-Yau (CY) orbifold $\mathcal{X}$ whose underlying toric variety is semi-projective, we construct and study a non-toric Lagrangian torus fibration on $\mathcal{X}$, which we call the Gross fibration. We apply the Strominger-Yau-Zaslow (SYZ) recipe to the Gross fibration of $\mathcal{X}$ to construct its mirror with the instanton corrections coming from genus 0 open orbifold Gromov-Witten (GW) invariants, which are virtual counts of holomorphic orbi-disks in $\mathcal{X}$ bounded by fibers of the Gross fibration. We explicitly evaluate all these invariants by first proving an open/closed equality and then employing the toric mirror theorem for suitable toric (partial) compactifications of $\mathcal{X}$. Our calculations are then applied to (1) prove a conjecture of Gross-Siebert on a relation between genus 0 open orbifold GW invariants and mirror maps of $\mathcal{X}$ -- this is called the open mirror theorem, which leads to an enumerative meaning of mirror maps, and (2) demonstrate how open (orbifold) GW invariants for toric CY orbifolds change under toric crepant resolutions -- an open analogue of Ruan's crepant resolution conjecture.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.