Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SYZ mirror symmetry for toric Calabi-Yau manifolds (1006.3830v3)

Published 19 Jun 2010 in math.SG and math.AG

Abstract: We investigate mirror symmetry for toric Calabi-Yau manifolds from the perspective of the SYZ conjecture. Starting with a non-toric special Lagrangian torus fibration on a toric Calabi-Yau manifold $X$, we construct a complex manifold $\check{X}$ using T-duality modified by quantum corrections. These corrections are encoded by Fourier transforms of generating functions of certain open Gromov-Witten invariants. We conjecture that this complex manifold $\check{X}$, which belongs to the Hori-Iqbal-Vafa mirror family, is inherently written in canonical flat coordinates. In particular, we obtain an enumerative meaning for the (inverse) mirror maps, and this gives a geometric reason for why their Taylor series expansions in terms of the K\"ahler parameters of $X$ have integral coefficients. Applying the results in \cite{Chan10} and \cite{LLW10}, we compute the open Gromov-Witten invariants in terms of local BPS invariants and give evidences of our conjecture for several 3-dimensional examples including $K_{\proj2}$ and $K_{\proj1\times\proj1}$.

Summary

We haven't generated a summary for this paper yet.