2000 character limit reached
Some supercongruences modulo $p^2$ (1101.1050v1)
Published 5 Jan 2011 in math.NT and math.CO
Abstract: Let $p>3$ be a prime, and let $m$ be an integer with $p\nmid m$. In the paper we prove some supercongruences concerning $$\align &\sum_{k=0}{p-1}\frac{\binom{2k}k\binom{3k}k}{54k},\ \sum_{k=0}{p-1}\frac{\binom{2k}k\binom{4k}{2k}}{128k},\ \sum_{k=0}{p-1}\frac{\binom{3k}k\binom{6k}{3k}}{432k}, &\sum_{k=0}{p-1}\frac{\binom{2k}k2\binom{3k}{k}}{mk}, \sum_{k=0}{p-1}\frac{\binom{2k}k2\binom{4k}{2k}}{mk},\ \sum_{k=0}{p-1}\f{\binom{2k}k\binom{3k}{k}\binom{6k}{3k}}{mk}\mod {p2}.\endalign$$ Thus we solve some conjectures of Zhi-Wei Sun and the author.