Congruences concerning Legendre polynomials II (1012.3898v2)
Abstract: Let $p>3$ be a prime, and let $m$ be an integer with $p\nmid m$. In the paper we solve some conjectures of Z.W. Sun concerning $\sum_{k=0}{p-1}\binom{2k}k3/mk\pmod{p2}$, $\sum_{k=0}{p-1}\binom{2k}k\b{4k}{2k}/mk\pmod p$ and $\sum_{k=0}{p-1}\binom{2k}k2\b{4k}{2k}/mk\pmod {p2}.$ In particular, we show that $\sum_{k=0}{\frac{p-1}{2}}\binom{2k}k3\equiv 0\pmod {p2}$ for $p\equiv 3,5,6\pmod 7$. Let $P_n(x)$ be the Legendre polynomials. In the paper we also show that $ P_{[\frac {p}{4}]}(t)\equiv -\big(\frac{-6}{p}\big)\sum_{x=0}{p-1} \big(\frac{x3-3/2(3t+5)x-9t-7}{p}\big)\pmod p$ and determine $P_{\frac{p-1}{2}}(\sqrt 2), P_{\frac{p-1}{2}}(\frac{3\sqrt 2}{4}), P_{\frac{p-1}{2}}(\sqrt {-3}),P_{\frac{p-1}{2}}(\frac{\sqrt 3}{2}), P_{\frac{p-1}{2}}(\sqrt {-63}), P_{\frac{p-1}{2}}(\frac {3\sqrt 7}{8}) \pmod p$, where $t$ is a rational $p-$integer, $[x]$ is the greatest integer not exceeding $x$ and $(\frac {a}{p})$ is the Legendre symbol. As consequences we determine $P_{[\frac {p}{4}]}(t)\pmod p$ in the cases $t=-5/3,-7/9,-65/63$ and confirm many conjectures of Z.W. Sun.