Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$p$-adic supercongruences conjectured by Sun (1911.00005v1)

Published 31 Oct 2019 in math.CO

Abstract: In this paper we prove three results conjectured by Z.-W. Sun. Let $p$ be an odd prime and let $h\in \mathbb{Z}$ with $2h-1\equiv0\pmod{p{}}$. For $a\in\mathbb{Z}{+}$ and $pa>3$, we show that \begin{align}\notag \sum_{k=0}{pa-1}\binom{hpa-1}{k}\binom{2k}{k}\bigg(-\frac{h}{2}\bigg)k\equiv0\pmod{p{a+1}}. \end{align} Also, for any $n\in \mathbb{Z}{+}$ we have \begin{align} \notag \nu_{p}\bigg(\sum_{k=0}{n-1}\binom{hn-1}{k}\binom{2k}{k}\bigg(-\frac{h}{2}\bigg)k\bigg)\geq\nu_{p}(n)\notag, \end{align} where $\nu_p(n)$ denotes the $p$-adic order of $n$. For any integer $m\not\equiv 0\pmod{p{}}$ and positive integer $n$, we have \begin{align*} \frac{1}{pn}\bigg(\sum_{k=0}{pn-1}\binom{pn-1}{k}\frac{\binom{2k}{k}}{(-m)k}-\bigg(\frac{m(m-4)}{p}\bigg)\sum_{k=0}{n-1}\binom{n-1}{k}\frac{\binom{2k}{k}}{(-m)k}\bigg)\in \mathbb{Z}_{p}, \end{align*} where $(\frac{.}{})$ is the Legendre symbol and $\mathbb{Z}_p$ is the ring of $p$-adic integers.

Summary

We haven't generated a summary for this paper yet.