New congruences involving products of two binomial coefficients (1601.04782v1)
Abstract: Let $p>3$ be a prime and let $a$ be a positive integer. We show that if $p\equiv1\pmod 4$ or $a>1$ then $$\sum_{k=0}{\lfloor\frac34pa\rfloor}\frac{\binom{2k}k2}{16k}\equiv\l(\frac{-1}{pa}\r)\pmod{p3}$$ with $(-)$ the Jacobi symbol, which confirms a conjecture of Z.-W. Sun. We also establish the following new congruences: \begin{align*}\sum_{k=0}{(p-1)/2}\frac{\binom{2k}k\binom{3k}k}{27k}\equiv&\l(\frac p3\r)\frac{2p+1}3\pmod{p2}, \\sum_{k=0}{(p-1)/2}\frac{\binom{6k}{3k}\binom{3k}k}{(2k+1)432k}\equiv&\l(\frac p3\r)\frac{3p+1}4\pmod{p2}, \\sum_{k=0}{(p-1)/2}\frac{\binom{4k}{2k}\binom{2k}k}{(2k+1)64k}\equiv&\l(\frac{-1}p\r)2{p-1}\pmod{p2}. \end{align*} Note that in 2003 Rodriguez-Villeguez posed conjectures on $$\sum_{k=0}{p-1}\frac{\binom{2k}k2}{16k},\ \sum_{k=0}{p-1}\frac{\binom{2k}k\binom{3k}k}{27k},\ \sum_{k=1}{p-1}\frac{\binom{4k}{2k}\binom{2k}k}{64k},\ \sum_{k=1}{p-1}\frac{\binom{6k}{3k}\binom{3k}k}{432k}$$ modulo $p2$ which were later proved.