Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Proof of some conjectural hypergeometric supercongruences via curious identities (2006.02918v3)

Published 4 Jun 2020 in math.NT and math.CO

Abstract: In this paper, we prove several supercongruences conjectured by Z.-W. Sun ten years ago via certain strange hypergeometric identities. For example, for any prime $p>3$, we show that $$\sum_{k=0}{p-1}\frac{\binom{4k}{2k+1}\binom{2k}k}{48k}\equiv0\pmod{p2},$$ and $$ \sum_{k=0}{p-1}\frac{\binom{2k}{k}\binom{3k}{k}}{24k}\equiv\begin{cases}\binom{(2p-2)/3}{(p-1)/3}\pmod{p2}\ &\mbox{if}\ p\equiv1\pmod{3},\ p/\binom{(2p+2)/3}{(p+1)/3}\pmod{p2}\ &\mbox{if}\ p\equiv2\pmod{3}.\end{cases} $$ We also obtain some other results of such types.

Summary

We haven't generated a summary for this paper yet.