Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Congruences concerning Legendre polynomials III (1012.4234v4)

Published 20 Dec 2010 in math.NT and math.CO

Abstract: Let $p>3$ be a prime, and let $R_p$ be the set of rational numbers whose denominator is coprime to $p$. Let ${P_n(x)}$ be the Legendre polynomials. In this paper we mainly show that for $m,n,t\in R_p$ with $m\not\e 0\pmod p$, $$\align &P_{[\frac p6]}(t) \e -\Big(\frac 3p\Big)\sum_{x=0}{p-1}\Big(\frac{x3-3x+2t}p\Big)\pmod p, &\Big(\sum_{x=0}{p-1}\Big(\frac{x3+mx+n}p\Big)\Big)2\equiv \Big(\frac{-3m}p\Big) \sum_{k=0}{[p/6]}\binom{2k}k\binom{3k}k\binom{6k}{3k} \Big(\frac{4m3+27n2}{123\cdot 4m3}\Big)k\pmod p,$$ where $(\frac ap)$ is the Legendre symbol and $[x]$ is the greatest integer function. As an application we solve some conjectures of Z.W. Sun and the author concerning $\sum_{k=0}{p-1}\binom{2k}k\binom{3k}k\binom{6k}{3k}/mk\pmod {p2}$, where $m$ is an integer not divisible by $p$.

Summary

We haven't generated a summary for this paper yet.