Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Some supercongruences modulo $p^2$ (1101.1050v1)

Published 5 Jan 2011 in math.NT and math.CO

Abstract: Let $p>3$ be a prime, and let $m$ be an integer with $p\nmid m$. In the paper we prove some supercongruences concerning $$\align &\sum_{k=0}{p-1}\frac{\binom{2k}k\binom{3k}k}{54k},\ \sum_{k=0}{p-1}\frac{\binom{2k}k\binom{4k}{2k}}{128k},\ \sum_{k=0}{p-1}\frac{\binom{3k}k\binom{6k}{3k}}{432k}, &\sum_{k=0}{p-1}\frac{\binom{2k}k2\binom{3k}{k}}{mk}, \sum_{k=0}{p-1}\frac{\binom{2k}k2\binom{4k}{2k}}{mk},\ \sum_{k=0}{p-1}\f{\binom{2k}k\binom{3k}{k}\binom{6k}{3k}}{mk}\mod {p2}.\endalign$$ Thus we solve some conjectures of Zhi-Wei Sun and the author.

Summary

We haven't generated a summary for this paper yet.