Super congruences involving Bernoulli and Euler polynomials (1407.0636v6)
Abstract: Let $p>3$ be a prime, and let $a$ be a rational p-adic integer. Let ${B_n(x)}$ and ${E_n(x)}$ denote the Bernoulli polynomials and Euler polynomials, respectively. In this paper we show that $$\sum_{k=0}{p-1}\binom ak\binom{-1-a}k\equiv (-1){\langle a\rangle_p}+ p2t(t+1)E_{p-3}(-a)\pmod{p3}$$ and for $a\not\equiv -\frac 12\pmod p$, $$\sum_{k=0}{p-1}\binom ak\binom{-1-a}k\frac 1{2k+1}\equiv \frac{1+2t}{1+2a} +p2\frac{t(t+1)}{1+2a}B_{p-2}(-a)\pmod{p3},$$ where $\langle a\rangle_p\in{0,1,\ldots,p-1}$ satisfying $a\equiv \langle a\rangle_p\pmod p$ and $t=(a-\langle a\rangle_p)/p$. Taking $a=-\frac 13,-\frac 14,-\frac 16$ in the above congruences we solve some conjectures of Z.W. Sun. In this paper we also establish congruences for $\sum_{k=0}{p-1}k\binom ak\binom{-1-a}k,\ \sum_{k=0}{p-1}\binom ak\binom{-1-a}k\frac 1{2k-1},\ \sum_{k=1}{p-1}\frac 1k\binom ak\binom{-1-a}k\pmod{p3}$ and $\sum_{k=1}{p-1}\frac {(-1)k}k\binom ak,\ \sum_{k=0}{p-1}\binom ak(-2)k\pmod{p2}.$