Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Persistence Exponent for the Simple Diffusion Equation: The Exact Solution for any Integer Dimension (1005.0120v2)

Published 2 May 2010 in cond-mat.stat-mech and physics.data-an

Abstract: The persistence exponent $\theta_o$ for the simple diffusion equation ${\phi}_t({\it x},t) = \triangle \phi (x,t)$ , with random Gaussian initial condition {\color{red},} has been calculated exactly using a method known as selective averaging. The probability that the value of the field $\phi$ at a specified spatial coordinate remains positive throughout for a certain time $t$ behaves as $t{-\theta_o}$ for asymptotically large time $t$. The value of $\theta_o$, calculated here for any integer dimension $d$, is $\theta_o = \frac{d}{4}$ for $d\leq 4$ and $1$ otherwise. This exact theoretical result is being reported possibly for the first time and is not in agreement with the accepted values $ \theta_o = 0.12, 0.18,0.23$ for $d=1,2,3$ respectively.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.