Persistence exponents of self-interacting random walks (2410.18699v1)
Abstract: The persistence exponent, which characterises the long-time decay of the survival probability of stochastic processes in the presence of an absorbing target, plays a key role in quantifying the dynamics of fluctuating systems. Determining this exponent for non-Markovian processes is known to be a difficult task, and exact results remain scarce despite sustained efforts. In this Letter, we consider the fundamental class of self-interacting random walks (SIRWs), which display long-range memory effects that result from the interaction of the random walker at time $t$ with the territory already visited at earlier times $t'<t$. We compute exactly the persistence exponent for all physically relevant SIRWs. As a byproduct, we also determine the splitting probability of these processes. Besides their intrinsic theoretical interest, these results provide a quantitative characterization of the exploration process of SIRWs, which are involved in fields as diverse as foraging theory, cell biology, and machine learning.