Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Persistence exponents of self-interacting random walks (2410.18699v1)

Published 24 Oct 2024 in cond-mat.stat-mech and math.PR

Abstract: The persistence exponent, which characterises the long-time decay of the survival probability of stochastic processes in the presence of an absorbing target, plays a key role in quantifying the dynamics of fluctuating systems. Determining this exponent for non-Markovian processes is known to be a difficult task, and exact results remain scarce despite sustained efforts. In this Letter, we consider the fundamental class of self-interacting random walks (SIRWs), which display long-range memory effects that result from the interaction of the random walker at time $t$ with the territory already visited at earlier times $t'<t$. We compute exactly the persistence exponent for all physically relevant SIRWs. As a byproduct, we also determine the splitting probability of these processes. Besides their intrinsic theoretical interest, these results provide a quantitative characterization of the exploration process of SIRWs, which are involved in fields as diverse as foraging theory, cell biology, and machine learning.

Summary

We haven't generated a summary for this paper yet.