Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Survival probability of stochastic processes beyond persistence exponents (1907.03632v1)

Published 8 Jul 2019 in cond-mat.stat-mech

Abstract: For many stochastic processes, the probability $S(t)$ of not-having reached a target in unbounded space up to time $t$ follows a slow algebraic decay at long times, $S(t)\sim S_0/t\theta$. This is typically the case of symmetric compact (i.e. recurrent) random walks. While the persistence exponent $\theta$ has been studied at length, the prefactor $S_0$, which is quantitatively essential, remains poorly characterized, especially for non-Markovian processes. Here we derive explicit expressions for $S_0$ for a compact random walk in unbounded space by establishing an analytic relation with the mean first-passage time of the same random walk in a large confining volume. Our analytical results for $S_0$ are in good agreement with numerical simulations, even for strongly correlated processes such as Fractional Brownian Motion, and thus provide a refined understanding of the statistics of longest first-passage events in unbounded space.

Summary

We haven't generated a summary for this paper yet.