Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Mixed Operators in Compressed Sensing (1004.0033v1)

Published 1 Apr 2010 in math.NA

Abstract: Applications of compressed sensing motivate the possibility of using different operators to encode and decode a signal of interest. Since it is clear that the operators cannot be too different, we can view the discrepancy between the two matrices as a perturbation. The stability of L1-minimization and greedy algorithms to recover the signal in the presence of additive noise is by now well-known. Recently however, work has been done to analyze these methods with noise in the measurement matrix, which generates a multiplicative noise term. This new framework of generalized perturbations (i.e., both additive and multiplicative noise) extends the prior work on stable signal recovery from incomplete and inaccurate measurements of Candes, Romberg and Tao using Basis Pursuit (BP), and of Needell and Tropp using Compressive Sampling Matching Pursuit (CoSaMP). We show, under reasonable assumptions, that the stability of the reconstructed signal by both BP and CoSaMP is limited by the noise level in the observation. Our analysis extends easily to arbitrary greedy methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube