Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 420 tok/s Pro
Claude Sonnet 4.5 30 tok/s Pro
2000 character limit reached

Recovery guarantees for compressed sensing with unknown errors (1702.04424v2)

Published 14 Feb 2017 in math.NA

Abstract: From a numerical analysis perspective, assessing the robustness of l1-minimization is a fundamental issue in compressed sensing and sparse regularization. Yet, the recovery guarantees available in the literature usually depend on a priori estimates of the noise, which can be very hard to obtain in practice, especially when the noise term also includes unknown discrepancies between the finite model and data. In this work, we study the performance of l1-minimization when these estimates are not available, providing robust recovery guarantees for quadratically constrained basis pursuit and random sampling in bounded orthonormal systems. Several applications of this work are approximation of high-dimensional functions, infinite-dimensional sparse regularization for inverse problems, and fast algorithms for non-Cartesian Magnetic Resonance Imaging.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.