Papers
Topics
Authors
Recent
2000 character limit reached

Recovery guarantees for compressed sensing with unknown errors

Published 14 Feb 2017 in math.NA | (1702.04424v2)

Abstract: From a numerical analysis perspective, assessing the robustness of l1-minimization is a fundamental issue in compressed sensing and sparse regularization. Yet, the recovery guarantees available in the literature usually depend on a priori estimates of the noise, which can be very hard to obtain in practice, especially when the noise term also includes unknown discrepancies between the finite model and data. In this work, we study the performance of l1-minimization when these estimates are not available, providing robust recovery guarantees for quadratically constrained basis pursuit and random sampling in bounded orthonormal systems. Several applications of this work are approximation of high-dimensional functions, infinite-dimensional sparse regularization for inverse problems, and fast algorithms for non-Cartesian Magnetic Resonance Imaging.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.