XZ Conjecture for SU(N): convex-hull criterion from vanishing torus integrals
Prove that for any admissible function f: [0,1]^{N(N−1)/2} × T^{N(N+1)/2−1} → C, if for all positive integers P the integral ∫_{[0,1]^{N(N−1)/2}} ∫_{T^{N(N+1)/2−1}} (f(x,z))^P · ˜J_{SU(N)}(x) · (dz_1/z_1) … (dz_{N(N+1)/2−1}/z_{N(N+1)/2−1}) dx_1 … dx_{N(N−1)/2} equals 0, then the zero vector does not lie in the convex hull of Sp(f), where Sp(f) denotes the set of multi-indices m ∈ Z^{N(N+1)/2−1} for which the Fourier–Laurent coefficient c_m(x) in the expansion f(x,z)=∑_{m} c_m(x) z^m is nonzero and ˜J_{SU(N)}(x)=2^{N−1}C_N ∏_{j=1}^{N−1} x_j with C_N a constant.
References
As expected in view of , we have the following conjecture and Theorem, which is proven by using Lemma \ref{lemma:rewrite_integral_for_SU(N)} extensively and the last part of the proof of Theorem 2.11 in . Let $f:[0,1]{\frac{N(N-1)}{2}\times \mathbb{T}{\frac{N(N+1)}{2}-1}\rightarrow$ be an admissible function. If $$\int_{[0,1]{\frac{N(N-1)}{2}\int_{\mathbb{T}{\frac{N(N+1)}{2}-1}fP \tilde{J}{SU(N)} \,\,\frac{dz_1}{z_1}\ldots \frac{dz{\frac{N(N+1)}{2}-1}{z_{\frac{N(N+1)}{2}-1}dx_1\ldots dx_{\frac{N(N-1)}{2} = 0$$ for all $P\in $, then $\vec{0}$ does not lie in the convex hull of $\mathrm{Sp}(f)$.