Weak Form of Malle’s Conjecture for Pushforward Discriminants
Prove that for every number field k, every finite permutation group G with normal subgroup T ◁ G, and the quotient map q: G → G/T, the number of surjections π ∈ Sur(G_k,G/T) ordered by the pushforward discriminant q_*disc satisfies # { π ∈ Sur(G_k,G/T) : |q_*disc(π)| ≤ X } ≪_ε X^{1/a(G\setminus T) + ε}, where a(G\setminus T) = min_{g ∈ G\setminus T} ind(g).
References
We then obtain the following conjecture following from a heuristic of Ellenberg and Venkatesh Question 4.3. Conjecture [The Weak Form of Malle's Conjecture for Pushforward Discriminants] Let k be a number field, G a finite permutation group with normal subgroup T\normal G, and q\colon G\to G/T the quotient map. Then #{\pi\in \Sur(G_k,G/T) : q_*\disc(\pi) \le X} \ll_{\epsilon} X{1/a(G\setminus T) + \epsilon}, where a(G\setminus T) = \min_{g\in G\setminus T} \ind(g).