Stein’s Fourier restriction conjecture for n ≥ 3
Determine whether the Fourier extension operator Ef(x)=∫_{B(0,1)} f(ω) e^{2πi(x_1 ω_1+⋯+x_{n−1} ω_{n−1}+x_n |ω|^2)} dω satisfies ||Ef||_{L^p(R^n)} ≤ C_{n,p} ||f||_{L^p(R^{n−1})} for all p > 2n/(n−1) in dimensions n ≥ 3.
Sponsor
References
In its adjoint form, Stein's Fourier restriction conjecture asserts that
\Vert Ef\Vert_{Lp(Rn)}\leq C_{n,p}\Vert f\Vert_{Lp(R{n-1})},\qquad p>\frac{2n}{n-1}.
The conjecture was proved by Fefferman and Stein for $n=2$, and remains open in dimension $n\geq 3$.
— A Survey of the Kakeya conjecture, 2000-2025
(2512.09397 - Zahl, 10 Dec 2025) in Section 1 (Introduction)