Local single-scale modular Fourier square function extension conjecture (paraboloid in R^3)
Prove the local single-scale modular Fourier square function extension inequality for the paraboloid in R^3, namely: for all ε > 0, q > 3, s ∈ N, all modulation sequences u = {u_I}_{I ∈ G_s[U]} ∈ V, and all bounded functions f ∈ L^∞(U), show that ||S_Fourier^{s,u} f||_{L^q(R^3)} ≤ C_{ε,q} 2^{ε s} ||f||_{L^∞(U)}, where S_Fourier^{s,u} is the modulated Fourier square function built from the pushforward to the paraboloid and dyadic wavelet projections over a 2^{-s}-separated grid.
References
The local single scale modular square function Fourier extension conjecture is that \begin{equation} \left\Vert \mathcal{S}{\operatorname*{Fourier}{s,\mathbf{u}f\right\Vert _{L{q}\left( \mathbb{R}{3}\right) }\lesssim C{\varepsilon,q} 2{\varepsilon s}\left\Vert f\right\Vert {L{\infty}\left( U\right) },\ \ \ \ \ s\in\mathbb{N},\text{ all }\mathbf{u}=\left{ u{I}\right} {I\in\mathcal{G}{s}\left[ U\right] }\in\mathcal{V}\text{ and }f\in L{\infty}\left( U\right) , \label{FECUS}% \end{equation} for all $\varepsilon>0$ and $q>3$.