Square minimizes the lowest magnetic Dirichlet eigenvalue among rectangles of fixed area
Prove that for every aspect ratio a > 0 and every constant magnetic field B ∈ ℝ, the lowest eigenvalue λ₁^B(Ω_{a,a^{-1}}) of the magnetic Dirichlet Laplacian (−i∇−A)² with Dirichlet boundary conditions on the rectangle Ω_{a,b} = (−a/2,a/2)×(−b/2,b/2), where the vector potential A generates the constant field B, satisfies λ₁^B(Ω_{a,a^{-1}}) ≥ λ₁^B(Ω_{1,1}).
References
In the case of rectangles, the following conjecture remains open.
                — Is the optimal magnetic rectangle a square?
                
                (2508.16152 - Krejcirik, 22 Aug 2025) in Introduction; Conjecture 1 (Equation (iso))