Periodic limiting prior for binomial Bayesian games
Prove that for the binomial Bayesian games {N,x_A,x_B} with 0 < x_A < x_B < 1, the equilibrium prior P^*_N(x_A,x_B) converges, as N \to \infty, to a periodic function P^{*,\varphi}_\loopedsquare(x_A,x_B) depending on the phase factor \varphi = 2\pi N x_0^*(x_A,x_B) \bmod 2\pi, and establish the first-order approximation P^*_N(x_A,x_B) = P^{*,\varphi}_\loopedsquare(x_A,x_B) + \mathcal{O}(1/N).
References
Conjecture [Binomial Bayesian limiting prior]\n\nFor a general {N,x_A,x_B} the prior $P*_N(x_A,x_B)$ converges to a periodic function $P{*,\varphi}_\loopedsquare$, depending on the phase factor $\varphi = \varphi_N(x_A,x_B)$ as $N \to \infty$:\n\n$P*_N(x_A,x_B) = P{*,\varphi_N(x_A,x_B)}_\loopedsquare(x_A,x_B) + \mathcal{O}(1/N)$\n\nThe implicit expression for the conjectured asymptotic log-odds $\vartheta{*,\varphi}_\loopedsquare$ can be found in equations eq:AsymptoticBayesianLogOdds01, eq:AsymptoticBayesianLogOdds02, eq:AsymptoticBayesianLogOdds03.