First-order asymptotic expansion of the binomial Bayesian prior
Establish a first-order large-N asymptotic expansion for the log-odds of the equilibrium prior in binomial Bayesian games, namely prove that for any 0 < x_A < x_B < 1 there exists a phase-dependent quantity \;^\varphi(x_A,x_B) such that \vartheta^*_N(x_A,x_B) = \vartheta^{*,\varphi}_\loopedsquare(x_A,x_B) + \frac{1}{N} \;^\varphi(x_A,x_B) + \mathcal{O}(N^{-2}), where \vartheta^{*,\varphi}_\loopedsquare is the phase-dependent limiting log-odds and \;^\varphi(x_A,x_B) is explicitly given (as in equation \eqref{eq:sampiPhiGammaResult}).
References
Conjecture\n\nThe Binomial Bayesian prior has the following asymptotic expansion for any $0 < x_A < x_B < 1$:\n\n$\vartheta*_N(x_A,x_B) = \vartheta{*,\varphi}_\loopedsquare(x_A,x_B) + \frac{1}{N} \, \varphi(x_A,x_B) +\n\mathcal{O} \left ( \frac{1}{N2} \right )$\n\nwhere $\varphi(x_A,x_B)$ can be defined explicitly by knowing $\vartheta{*,\varphi}_\loopedsquare$.\nThe explicit definition can be found in equation eq:sampiPhiGammaResult.