Operationalizing Computation in Superposition
Develop a rigorous operational framework for computation under superposition in neural networks, where features are encoded as overlapping linear combinations of neurons, in order to formally specify how such superposed feature representations implement and support computation.
References
Superposition also raises open questions like operationalizing computation in superposition \citep{vaintrob_mathematical_2024}, attention head superposition \citep{elhage_toy_2022,jermyn_circuits_2023,lieberum_does_2023,gould_successor_2023}, representing feature clusters \citep{elhage_toy_2022}, connections to adversarial robustness \citep{elhage_toy_2022}, anti-correlated feature organization \citep{elhage_toy_2022}, and architectural effects \citep{nanda_200superposition_2023}.