Monotonicity of zeros with respect to φ for hypergeometric B_φ
Prove that for parameters φ, ψ ∈ (0, ∞)^N with φ ≤ ψ componentwise and for A in the normalized Laguerre–Pólya class, the j-th positive zero ζ_j^+(φ) of the n-th Brenke polynomial pn(x) generated by A and associated to B_φ(z) = 0F_N(-; φ1,...,φN; z) is nondecreasing in φ (i.e., ζ_j^+(φ) ≤ ζ_j^+(ψ)), while the j-th negative zero ζ_j^−(φ) is nonincreasing in φ (i.e., ζ_j^−(φ) ≥ ζ_j^−(ψ)).
References
Monotonicity of the zeros of pn with respect to the parameters φi. We say that φ ψ if φi ≤ ψ i for all i = 1,...,N. Then, our conjecture is: (1) The j-th positive zero ζ is an increasing function of the parameter set φ: if φ ψ then ζ (φ) ≤ ζ (ψ). (2) The j-th negative zero ζ is a decreasing function of the parameter set φ: if φ ψ then ζ (φ) ≥ ζ (ψ). j+ j+ j+ j− j− j−