Dice Question Streamline Icon: https://streamlinehq.com

Minimality of signature automata by merging top-level equivalence classes

Determine whether a minimal deterministic parity automaton recognising a positional language can be obtained from a signature automaton by merging ≈_d-equivalent states (i.e., whether this yields a canonical minimal form).

Information Square Streamline Icon: https://streamlinehq.com

Background

Signature automata encode layered preorders. The authors observe they may not be minimal and conjecture that merging the top-level equivalence classes could always yield a minimal automaton, hinting at a potential canonical form and a pathway to efficient minimisation.

References

Signature automata are not minimal in general, but we conjecture that by merging $\eqSig {d}$-equivalent states we should obtain a minimal automaton (see Section~\ref{subsec-p4-concl:minimisation} for more discussions).

Positional $ω$-regular languages (2401.15384 - Casares et al., 27 Jan 2024) in Section 4.1: Signature automata and full progress consistency