Macbeath point inclusion conjecture
Prove that for every compact convex set K ⊂ R^d with non-empty interior, if p is the Macbeath point of K (the unique maximizer of x ↦ vol(K ∩ (−K + 2x))), then the inclusion K − p ⊂ −d(K − p) holds.
References
Conjecture 2.1. The Macbeath point p of a compact convex set K ⊂ R with non-empty interior satisfies the inclusion K − p ⊂ −d(K − p).
                — Quantitative Steinitz theorem and polarity
                
                (2403.14761 - Ivanov, 21 Mar 2024) in Conjecture 2.1, Section 2