L^p-Mahler conjecture for symmetric convex bodies
Establish that for every origin-symmetric convex body K ⊂ R^n and every p > 0, the L^p-Mahler volume M_p(K) = ∫_{R^n} |K| e^{-h_{p,K}(y)} dy, where h_{p,K}(y) = (1/p) log ∫_K e^{p⟨x,y⟩} dx, satisfies M_p(K) ≥ M_p(B_2^n).
References
CONJECTURE 8.3. For symmetric K CR", Mp (K) ≥ Mp (B2).
                — Convex meets complex
                
                (2410.23500 - Rubinstein, 30 Oct 2024) in Section 8, Conjecture 8.3