Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantitative Steinitz theorem and polarity (2403.14761v3)

Published 21 Mar 2024 in math.MG

Abstract: The classical Steinitz theorem asserts that if the origin lies within the interior of the convex hull of a set $S \subset \mathbb{R}d$, then there are at most $2d$ points in $S$ whose convex hull contains the origin within its interior. B\'ar\'any, Katchalski, and Pach established a quantitative version of Steinitz's theorem, showing that for a convex polytope $Q$ in $\mathbb{R}d$ containing the standard Euclidean unit ball $\mathbf{B}d$, there exist at most $2d$ vertices of $Q$ whose convex hull $Q'$ satisfies $r\mathbf{B}d \subset Q' $ with $r \geq d{-2d}$. Recently, M\'arton Nasz\'odi and the author derived a polynomial bound on $r$. This paper aims to establish a bound on $r$ based on the number of vertices of $Q.$ In other words, we demonstrate an effective method to remove several points from the original set $Q$ without significantly altering the bound on $r$. Specifically, if the number of vertices of $Q$ scales linearly with the dimension, i.e., $\alpha d$, then one can select $2d$ vertices such that $r \geq \frac{1}{5 \alpha d}$. The proof relies on a polarity trick, which may be of independent interest: we demonstrate the existence of a point $c$ in the interior of a convex polytope $P \subset \mathbb{R}d$ such that the vertices of the polar polytope $(P-c)\circ$ sum up to zero.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. Quantitative Helly-type theorems via sparse approximation. Discrete & Computational Geometry, pages 1–8, 2022.
  2. Imre Bárány. Combinatorial convexity, volume 77. American Mathematical Soc., 2021.
  3. On the exact constant in the quantitative Steinitz theorem in the plane. Discrete & Computational Geometry, 12(4):387–398, 1994.
  4. Quantitative Helly-type theorems. Proceedings of the American Mathematical Society, 86(1):109–114, 1982.
  5. Peter Brass. On the quantitative Steinitz theorem in the plane. Discrete & Computational Geometry, 17(1):111–117, 1997.
  6. Silouanos Brazitikos. Quantitative Helly-type theorem for the diameter of convex sets. Discrete & Computational Geometry, 57(2):494–505, November 2016.
  7. Silouanos Brazitikos. Brascamp–Lieb inequality and quantitative versions of Helly’s theorem. Mathematika, 63(1):272–291, 2017.
  8. Silouanos Brazitikos. Polynomial estimates towards a sharp Helly-type theorem for the diameter of convex sets. Bulletin of the Hellenic mathematical society, 62:19–25, 2018.
  9. Twice-Ramanujan sparsifiers. SIAM Rev., 56(2):315–334, 2014.
  10. Colorful Helly-type theorems for the volume of intersections of convex bodies. Journal of Combinatorial Theory, Series A, 178:105361, 2021.
  11. Quantitative combinatorial geometry for continuous parameters. Discrete & Computational Geometry, 57(2):318–334, 2017.
  12. Continuous quantitative helly-type results. Proceedings of the American Mathematical Society, 150(5):2181–2193, 2022.
  13. Peter M. Gruber. Convex and Discrete Geometry. Springer Berlin Heidelberg, 2007.
  14. A quantitative Helly-type theorem: containment in a homothet. SIAM Journal on Discrete Mathematics, 36(2):951–957, 2022.
  15. Quantitative Steinitz theorem: A spherical version. arXiv preprint arXiv:2306.01663, 2023.
  16. Quantitative steinitz theorem: A polynomial bound. Bulletin of the London Mathematical Society, 56(2):796–802, 2024.
  17. Geometric representation of classes of concave functions and duality. arXiv preprint arXiv:2112.13881, 2021.
  18. Quantitative Steinitz’s theorems with applications to multifingered grasping. Discrete & Computational Geometry, 7(3):295–318, 1992.
  19. Joseph Lehec. Partitions and functional Santaló inequalities. Archiv der Mathematik, 92(1):89–94, 2009.
  20. Alexander M Macbeath. A theorem on non-homogeneous lattices. Annals of Mathematics, pages 269–293, 1952.
  21. The Santaló-regions of a convex body. Transactions of the American Mathematical Society, 350(11):4569–4591, 1998.
  22. Márton Naszódi. Proof of a conjecture of Bárány, Katchalski and Pach. Discrete & Computational Geometry, 55(1):243–248, 2016.
  23. Ernst Steinitz. Bedingt konvergente Reihen und konvexe Systeme. J. Reine Angew. Math., 143:128–176, 1913.

Summary

We haven't generated a summary for this paper yet.