Generality of Lp-type RKBS and existence of embedding
Determine whether Lp-type reproducing kernel Banach spaces provide a sufficiently general modeling framework for machine learning hypothesis spaces; specifically, ascertain whether for any reproducing kernel Banach space E of real-valued functions on a domain Ω there exists an Lp-type reproducing kernel Banach space Bp on the same domain such that the embeddings E → Bp → L∞(Ω) hold.
References
However, we still do not know whether $L_p$-type RKBS is a flexible enough modeling. In this paper, we consider the following questions: Question. Given a RKBS E of functions from $\Omega\rightarrow \mathbb{R}$, does there exist an $\mathcal{L}p-$type RKBS $\mathcal{B}_p$ on $X$ with the embeddings $E\hookrightarrow \mathcal{B}_p\hookrightarrow F=\mathcal{L}\infty(\Omega)$, where $\mathcal{L}_\infty(\Omega)$ denotes all the pointwise bounded function on $\Omega$.