Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

On free bases of Banach spaces (2405.03556v1)

Published 6 May 2024 in math.FA and math.GN

Abstract: We call a closed subset M of a Banach space X a free basis of X if it contains the null vector and every Lipschitz map from M to a Banach space Y, which preserves the null vectors can be uniquely extended to a bounded linear map from X to Y. We then say that two complete metric spaces M and N are Mol-equivalent if they admit bi-Lipschitz copies M' and N', respectively that are free bases of a common Banach space satisfying span M'=span N'. In this note, we compare Mol-equivalence with some other natural equivalences on the class of complete metric spaces. The main result states that Mol-equivalent spaces must have the same \v{C}ech-Lebesgue covering dimension. In combination with the work of Godard, this implies that two complete metric spaces with isomorphic Lipschitz-free spaces need not be Mol-equivalent. Also, there exist non-homeomorphic Mol-equivalent metric spaces, and, in contrast with the covering dimension, the metric Assouad dimension is not preserved by Mol-equivalence.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: