LP-coarse Baum-Connes conjecture isomorphism
Establish that for every Riemannian manifold X with bounded geometry and any maximal 1-net N in X, the evaluation map ev: lim_{d→∞} CP(P_d(N)) → CP(X), from the LP-localization algebras of the Rips complexes P_d(N) to the LP-Roe algebra CP(X) of X, induces an isomorphism on K-theory ev_*: lim_{d→∞} K_*(CP(P_d(N))) → K_*(CP(X)).
References
Conjecture 2.4 (LP-coarse Baum-Connes conjecture). Let X be a Riemannian manifold with bounded geometry and N a maximal 1-net of X. The LP-coarse Baum-Connes conjecture for X states that the evaluation map ev: lim CP(Pa(N)) -> CP(X) induces an isomorphism evx : lim K*(CP(Pa(N))) -> K*(CP(X)).
— $\ell^p$-coarse Baum-Connes conjecture for $\ell^{q}$-coarse embeddable spaces
(2411.15070 - Wang et al., 22 Nov 2024) in Conjecture 2.4, Section 2