Rates of convergence for Lasso with SURE-based penalty selection
Determine whether the Lasso estimator in the high-dimensional linear mean regression model Y = X^T β + e, with the penalty parameter chosen via Stein’s unbiased risk estimation (SURE), namely λ̂^S = argmin_{λ>0} { n^{-1} ∑_{i=1}^n (Y_i − X_i^T β̂(λ))^2 + (2σ^2/n) ||β̂(λ)||_0 − σ^2 }, satisfies the standard high-dimensional convergence rates ||β̂(λ̂^S) − β||_2 = O_P(√(s log p / n)) and ||β̂(λ̂^S) − β||_1 = O_P(√(s^2 log p / n)).
References
[BZ21] derived a bound for the variance of |\widehat\beta(\lambda)|_0 but, to the best of our knowledge, it is still not clear if the Lasso estimator \widehat\beta = \widehat\beta(\widehat\lambdaS) satisfies eq: lasso rate of convergence.
eq: lasso rate of convergence: