Generation of CA(G,A) by Lazy and Invertible Cellular Automata
Prove or disprove that the monoid of all cellular automata over A^G equals the submonoid generated by invertible cellular automata together with lazy cellular automata; specifically, establish whether CA(G,A) = ⟨ICA(G,A) ∪ L(G,A)⟩. If this equality does not hold, determine properties and structure of the submonoids ⟨ICA(G,A) ∪ L(G,A)⟩ and ⟨L(G,A)⟩.
References
In this section, we propose two open problems related to the study of lazy CAs. If \mathcal{L}(G,A) is the set of all lazy cellular automata over AG, prove or disprove the following: \text{CA}(G,A) = \langle \text{ICA}(G,A) \cup \mathcal{L}(G,A) \rangle. If the above does not hold, what can we say of the submonoids \langle \text{ICA}(G,A) \cup \mathcal{L}(G,A) \rangle and \langle \mathcal{L}(G,A) \rangle?