Compute δ(G) for the classical groups and their principal congruence subgroups
Compute the exact value of δ(G), the minimal positive integer δ such that G admits a faithful level-transitive self-similar action on a regular rooted δ-ary tree (equivalently, the minimal index of a simple virtual endomorphism), for each group G among SL_{l+1}(R), Sp_{2l}(R), SO_{2l}(R), and SO_{2l+1}(R), and for each of their m-th principal congruence subgroups (with m ≥ e), where R is the ring of integers of a p-adic field K and l ≥ 1 (with l ≥ 2 in the even-orthogonal case).
References
Problem F Compute δ(G) for the groups G that appear in Corollary E.
— Self-similarity of the classical $p$-adic Lie groups and Lie algebras
(2410.22639 - Livramento et al., 30 Oct 2024) in Introduction, Problem F