Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

On the Effect of Regularization in Policy Mirror Descent (2507.08718v1)

Published 11 Jul 2025 in cs.LG

Abstract: Policy Mirror Descent (PMD) has emerged as a unifying framework in reinforcement learning (RL) by linking policy gradient methods with a first-order optimization method known as mirror descent. At its core, PMD incorporates two key regularization components: (i) a distance term that enforces a trust region for stable policy updates and (ii) an MDP regularizer that augments the reward function to promote structure and robustness. While PMD has been extensively studied in theory, empirical investigations remain scarce. This work provides a large-scale empirical analysis of the interplay between these two regularization techniques, running over 500k training seeds on small RL environments. Our results demonstrate that, although the two regularizers can partially substitute each other, their precise combination is critical for achieving robust performance. These findings highlight the potential for advancing research on more robust algorithms in RL, particularly with respect to hyperparameter sensitivity.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.