Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Convergence Rate for Exact Policy Mirror Descent in Discounted Markov Decision Processes (2302.11381v3)

Published 22 Feb 2023 in math.OC, cs.LG, math.ST, and stat.TH

Abstract: Policy Mirror Descent (PMD) is a general family of algorithms that covers a wide range of novel and fundamental methods in reinforcement learning. Motivated by the instability of policy iteration (PI) with inexact policy evaluation, PMD algorithmically regularises the policy improvement step of PI. With exact policy evaluation, PI is known to converge linearly with a rate given by the discount factor $\gamma$ of a Markov Decision Process. In this work, we bridge the gap between PI and PMD with exact policy evaluation and show that the dimension-free $\gamma$-rate of PI can be achieved by the general family of unregularised PMD algorithms under an adaptive step-size. We show that both the rate and step-size are unimprovable for PMD: we provide matching lower bounds that demonstrate that the $\gamma$-rate is optimal for PMD methods as well as PI, and that the adaptive step-size is necessary for PMD to achieve it. Our work is the first to relate PMD to rate-optimality and step-size necessity. Our study of the convergence of PMD avoids the use of the performance difference lemma, which leads to a direct analysis of independent interest. We also extend the analysis to the inexact setting and establish the first dimension-optimal sample complexity for unregularised PMD under a generative model, improving upon the best-known result.

Citations (9)

Summary

We haven't generated a summary for this paper yet.