Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Training-free Generation of Temporally Consistent Rewards from VLMs (2507.04789v1)

Published 7 Jul 2025 in cs.RO

Abstract: Recent advances in vision-LLMs (VLMs) have significantly improved performance in embodied tasks such as goal decomposition and visual comprehension. However, providing accurate rewards for robotic manipulation without fine-tuning VLMs remains challenging due to the absence of domain-specific robotic knowledge in pre-trained datasets and high computational costs that hinder real-time applicability. To address this, we propose $\mathrm{T}2$-VLM, a novel training-free, temporally consistent framework that generates accurate rewards through tracking the status changes in VLM-derived subgoals. Specifically, our method first queries the VLM to establish spatially aware subgoals and an initial completion estimate before each round of interaction. We then employ a Bayesian tracking algorithm to update the goal completion status dynamically, using subgoal hidden states to generate structured rewards for reinforcement learning (RL) agents. This approach enhances long-horizon decision-making and improves failure recovery capabilities with RL. Extensive experiments indicate that $\mathrm{T}2$-VLM achieves state-of-the-art performance in two robot manipulation benchmarks, demonstrating superior reward accuracy with reduced computation consumption. We believe our approach not only advances reward generation techniques but also contributes to the broader field of embodied AI. Project website: https://t2-vlm.github.io/.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com