Papers
Topics
Authors
Recent
Search
2000 character limit reached

How to use quantum computers for biomolecular free energies

Published 25 Jun 2025 in quant-ph, cond-mat.str-el, physics.bio-ph, physics.chem-ph, and physics.comp-ph | (2506.20587v1)

Abstract: Free energy calculations are at the heart of physics-based analyses of biochemical processes. They allow us to quantify molecular recognition mechanisms, which determine a wide range of biological phenomena from how cells send and receive signals to how pharmaceutical compounds can be used to treat diseases. Quantitative and predictive free energy calculations require computational models that accurately capture both the varied and intricate electronic interactions between molecules as well as the entropic contributions from motions of these molecules and their aqueous environment. However, accurate quantum-mechanical energies and forces can only be obtained for small atomistic models, not for large biomacromolecules. Here, we demonstrate how to consistently link accurate quantum-mechanical data obtained for substructures to the overall potential energy of biomolecular complexes by machine learning in an integrated algorithm. We do so using a two-fold quantum embedding strategy where the innermost quantum cores are treated at a very high level of accuracy. We demonstrate the viability of this approach for the molecular recognition of a ruthenium-based anticancer drug by its protein target, applying traditional quantum chemical methods. As such methods scale unfavorable with system size, we analyze requirements for quantum computers to provide highly accurate energies that impact the resulting free energies. Once the requirements are met, our computational pipeline FreeQuantum is able to make efficient use of the quantum computed energies, thereby enabling quantum computing enhanced modeling of biochemical processes. This approach combines the exponential speedups of quantum computers for simulating interacting electrons with modern classical simulation techniques that incorporate machine learning to model large molecules.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 8 likes about this paper.