Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Predictive Free Energy Simulations Through Hierarchical Distillation of Quantum Hamiltonians (2509.10967v1)

Published 13 Sep 2025 in physics.chem-ph, cs.LG, and physics.bio-ph

Abstract: Obtaining the free energies of condensed phase chemical reactions remains computationally prohibitive for high-level quantum mechanical methods. We introduce a hierarchical machine learning framework that bridges this gap by distilling knowledge from a small number of high-fidelity quantum calculations into increasingly coarse-grained, machine-learned quantum Hamiltonians. By retaining explicit electronic degrees of freedom, our approach further enables a faithful embedding of quantum and classical degrees of freedom that captures long-range electrostatics and the quantum response to a classical environment to infinite order. As validation, we compute the proton dissociation constants of weak acids and the kinetic rate of an enzymatic reaction entirely from first principles, reproducing experimental measurements within chemical accuracy or their uncertainties. Our work demonstrates a path to condensed phase simulations of reaction free energies at the highest levels of accuracy with converged statistics.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.