Sparse domination for rough multilinear singular integrals (2506.17905v1)
Abstract: Let $\Omega$ be a function on $\mathbb{R}{mn} $, homogeneous of degree zero, and satisfy a cancellation condition on the unit sphere $\mathbb{S}{mn-1}$. In this paper, we show that the multilinear singular integral operator [ \mathcal{T}{\Omega}(f_1, \ldots, f_m)(x) := \mathrm{p.v.} \int{\mathbb{R}{mn}} \frac{\Omega(x - y_1, \ldots, x - y_m)}{|x - \vec{y}|{mn}} \prod_{i=1}m f_i(y_i) \, d\vec{y}, ] associated with a rough kernel $\Omega \in Lr(\mathbb{S}{mn-1}) $, $r > 1 $, admits a sparse domination, where $\quad \vec{y}=(y_1,\ldots,y_m)$ and $ d\vec{y}=dy_1\cdots dy_m$. As a consequence, we derive some {quantitative weighted norm inequalities} for $ \mathcal{T}_{\Omega} $.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.