Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Limiting weak-type behavior for rough bilinear operators (2011.11512v2)

Published 23 Nov 2020 in math.CA

Abstract: Let $\Omega_1,\Omega_2$ be functions of homogeneous of degree $0$ and $\vec\Omega=(\Omega_1,\Omega_2)\in L\log L(\mathbb{S}{n-1})\times L\log L(\mathbb{S}{n-1})$. In this paper, we investigate the limiting weak-type behavior for bilinear maximal function $M_{\vec\Omega}$ and bilinear singular integral $T_{\vec\Omega}$ associated with rough kernel $\vec\Omega$. For all $f,g\in L1(\mathbb{R}n)$, we show that $$\lim_{\lambda\to 0+}\lambda |\big{ x\in\mathbb{R}n:M_{\vec\Omega}(f_1,f_2)(x)>\lambda\big}|2 = \frac{|\Omega_1\Omega_2|{L{1/2}(\mathbb{S}{n-1})}}{\omega{n-1}2}\prod\limits_{i=1}2| f_i|{L1}$$ and $$\lim{\lambda\to 0+}\lambda|\big{ x\in\mathbb{R}n:| T_{\vec\Omega}(f_1,f_2)(x)|>\lambda\big}|{2} = \frac{|\Omega_1\Omega_2|{L{1/2}(\mathbb{S}{n-1})}}{n2}\prod\limits{i=1}2| f_i|{L1}.$$ As consequences, the lower bounds of weak-type norms of $M{\vec\Omega}$ and $T_{\vec\Omega}$ are obtained. These results are new even in the linear case. The corresponding results for rough bilinear fractional maximal function and fractional integral operator are also discussed.

Summary

We haven't generated a summary for this paper yet.