Limiting weak-type behavior for rough bilinear operators (2011.11512v2)
Abstract: Let $\Omega_1,\Omega_2$ be functions of homogeneous of degree $0$ and $\vec\Omega=(\Omega_1,\Omega_2)\in L\log L(\mathbb{S}{n-1})\times L\log L(\mathbb{S}{n-1})$. In this paper, we investigate the limiting weak-type behavior for bilinear maximal function $M_{\vec\Omega}$ and bilinear singular integral $T_{\vec\Omega}$ associated with rough kernel $\vec\Omega$. For all $f,g\in L1(\mathbb{R}n)$, we show that $$\lim_{\lambda\to 0+}\lambda |\big{ x\in\mathbb{R}n:M_{\vec\Omega}(f_1,f_2)(x)>\lambda\big}|2 = \frac{|\Omega_1\Omega_2|{L{1/2}(\mathbb{S}{n-1})}}{\omega{n-1}2}\prod\limits_{i=1}2| f_i|{L1}$$ and $$\lim{\lambda\to 0+}\lambda|\big{ x\in\mathbb{R}n:| T_{\vec\Omega}(f_1,f_2)(x)|>\lambda\big}|{2} = \frac{|\Omega_1\Omega_2|{L{1/2}(\mathbb{S}{n-1})}}{n2}\prod\limits{i=1}2| f_i|{L1}.$$ As consequences, the lower bounds of weak-type norms of $M{\vec\Omega}$ and $T_{\vec\Omega}$ are obtained. These results are new even in the linear case. The corresponding results for rough bilinear fractional maximal function and fractional integral operator are also discussed.