Sparse bounds for maximal oscillatory rough singular integral operators (2303.00594v1)
Abstract: We prove sparse bounds for maximal oscillatory rough singular integral operator $$T{P}{\Omega,*}f(x):=\sup{\epsilon>0} \left|\int_{|x-y|>\epsilon}e{\iota P(x,y)}\frac{\Omega\big((x-y)/|x-y|\big)}{|x-y|{n}}f(y)dy\right|,$$ where $P(x,y)$ is a real-valued polynomial on $\mathbb{R}{n}\times \mathbb{R}{n}$ and $\Omega\in L{\infty}(\mathbb{S}{n-1})$ is a homogeneous function of degree zero with $\int_{\mathbb{S}{n-1}}\Omega(\theta)~d\theta=0$. This allows us to conclude weighted $Lp-$estimates for the operator $T{P}_{\Omega,*}$. Moreover, the norm $|TP_{\Omega,*}|_{Lp\rightarrow Lp}$ depends only on the total degree of the polynomial $P(x,y)$, but not on the coefficients of $P(x,y)$. Finally, we will show that these techniques also apply to obtain sparse bounds for oscillatory rough singular integral operator $T{P}_{\Omega}$ for $\Omega\in L{q}(\mathbb{S}{n-1})$, $1<q\leq\infty$.