Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

RADAR: Recall Augmentation through Deferred Asynchronous Retrieval (2506.07261v1)

Published 8 Jun 2025 in cs.IR and cs.LG

Abstract: Modern large-scale recommender systems employ multi-stage ranking funnel (Retrieval, Pre-ranking, Ranking) to balance engagement and computational constraints (latency, CPU). However, the initial retrieval stage, often relying on efficient but less precise methods like K-Nearest Neighbors (KNN), struggles to effectively surface the most engaging items from billion-scale catalogs, particularly distinguishing highly relevant and engaging candidates from merely relevant ones. We introduce Recall Augmentation through Deferred Asynchronous Retrieval (RADAR), a novel framework that leverages asynchronous, offline computation to pre-rank a significantly larger candidate set for users using the full complexity ranking model. These top-ranked items are stored and utilized as a high-quality retrieval source during online inference, bypassing online retrieval and pre-ranking stages for these candidates. We demonstrate through offline experiments that RADAR significantly boosts recall (2X Recall@200 vs DNN retrieval baseline) by effectively combining a larger retrieved candidate set with a more powerful ranking model. Online A/B tests confirm a +0.8% lift in topline engagement metrics, validating RADAR as a practical and effective method to improve recommendation quality under strict online serving constraints.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.