Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A Comprehensive Analysis of Large Language Model Outputs: Similarity, Diversity, and Bias (2505.09056v1)

Published 14 May 2025 in cs.CL

Abstract: LLMs represent a major step toward artificial general intelligence, significantly advancing our ability to interact with technology. While LLMs perform well on Natural Language Processing tasks -- such as translation, generation, code writing, and summarization -- questions remain about their output similarity, variability, and ethical implications. For instance, how similar are texts generated by the same model? How does this compare across different models? And which models best uphold ethical standards? To investigate, we used 5{,}000 prompts spanning diverse tasks like generation, explanation, and rewriting. This resulted in approximately 3 million texts from 12 LLMs, including proprietary and open-source systems from OpenAI, Google, Microsoft, Meta, and Mistral. Key findings include: (1) outputs from the same LLM are more similar to each other than to human-written texts; (2) models like WizardLM-2-8x22b generate highly similar outputs, while GPT-4 produces more varied responses; (3) LLM writing styles differ significantly, with Llama 3 and Mistral showing higher similarity, and GPT-4 standing out for distinctiveness; (4) differences in vocabulary and tone underscore the linguistic uniqueness of LLM-generated content; (5) some LLMs demonstrate greater gender balance and reduced bias. These results offer new insights into the behavior and diversity of LLM outputs, helping guide future development and ethical evaluation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 18 likes.