Papers
Topics
Authors
Recent
2000 character limit reached

YOLOv12: A Breakdown of the Key Architectural Features (2502.14740v1)

Published 20 Feb 2025 in cs.CV and cs.AI

Abstract: This paper presents an architectural analysis of YOLOv12, a significant advancement in single-stage, real-time object detection building upon the strengths of its predecessors while introducing key improvements. The model incorporates an optimised backbone (R-ELAN), 7x7 separable convolutions, and FlashAttention-driven area-based attention, improving feature extraction, enhanced efficiency, and robust detections. With multiple model variants, similar to its predecessors, YOLOv12 offers scalable solutions for both latency-sensitive and high-accuracy applications. Experimental results manifest consistent gains in mean average precision (mAP) and inference speed, making YOLOv12 a compelling choice for applications in autonomous systems, security, and real-time analytics. By achieving an optimal balance between computational efficiency and performance, YOLOv12 sets a new benchmark for real-time computer vision, facilitating deployment across diverse hardware platforms, from edge devices to high-performance clusters.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.