Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Beyond Static Tools: Evaluating Large Language Models for Cryptographic Misuse Detection (2411.09772v1)

Published 14 Nov 2024 in cs.CR and cs.LG

Abstract: The use of LLMs in software development is rapidly growing, with developers increasingly relying on these models for coding assistance, including security-critical tasks. Our work presents a comprehensive comparison between traditional static analysis tools for cryptographic API misuse detection-CryptoGuard, CogniCrypt, and Snyk Code-and the LLMs-GPT and Gemini. Using benchmark datasets (OWASP, CryptoAPI, and MASC), we evaluate the effectiveness of each tool in identifying cryptographic misuses. Our findings show that GPT 4-o-mini surpasses current state-of-the-art static analysis tools on the CryptoAPI and MASC datasets, though it lags on the OWASP dataset. Additionally, we assess the quality of LLM responses to determine which models provide actionable and accurate advice, giving developers insights into their practical utility for secure coding. This study highlights the comparative strengths and limitations of static analysis versus LLM-driven approaches, offering valuable insights into the evolving role of AI in advancing software security practices.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.