Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

VerilogEval: Evaluating Large Language Models for Verilog Code Generation (2309.07544v2)

Published 14 Sep 2023 in cs.LG and cs.SE
VerilogEval: Evaluating Large Language Models for Verilog Code Generation

Abstract: The increasing popularity of LLMs has paved the way for their application in diverse domains. This paper proposes a benchmarking framework tailored specifically for evaluating LLM performance in the context of Verilog code generation for hardware design and verification. We present a comprehensive evaluation dataset consisting of 156 problems from the Verilog instructional website HDLBits. The evaluation set consists of a diverse set of Verilog code generation tasks, ranging from simple combinational circuits to complex finite state machines. The Verilog code completions can be automatically tested for functional correctness by comparing the transient simulation outputs of the generated design with a golden solution. We also demonstrate that the Verilog code generation capability of pretrained LLMs could be improved with supervised fine-tuning by bootstrapping with LLM generated synthetic problem-code pairs.

Evaluation of LLMs for Verilog Code Generation: An Overview

The paper "VerilogEval: Evaluating LLMs for Verilog Code Generation" presents a focused and methodically rigorous exploration of the efficacy of LLMs within the domain of Verilog code generation for hardware design. This work is motivated by the escalating application of LLMs, traditionally lauded for their capability in handling natural language processing tasks, into domain-specific applications such as electronic design automation. The authors of this paper contribute to the field by introducing a specialized benchmarking framework, VerilogEval, specifically for evaluating LLMs in the context of Verilog code synthesis.

Dataset and Benchmark Framework

Central to the paper is the development and deployment of a comprehensive evaluation dataset, which consists of 156 problems curated from the HDLBits Verilog instructional website. These problems span a range of Verilog coding tasks, from the implementation of basic combinational circuits to complex finite state machine designs. The inclusion of both simple and intricate tasks addresses a diverse spectrum of evaluation scenarios, thus providing a thorough avenue for assessing the functional correctness of LLM-generated Verilog code.

The evaluation framework leverages automated functional correctness tests by comparing transient simulation outputs of code completions against golden reference solutions. This approach ensures objectivity and reproducibility in evaluation, which are essential for benchmarking the performance of LLMs. The paper also places emphasis on the transformation of some problems into a text-only format, with a distinction between machine-generated and human-curated problem descriptions. This distinction not only facilitates automated generation but also provides a nuanced dataset that accounts for natural language diversity encountered in real-world applications.

Implications of Supervised Fine-Tuning

A distinctive feature of this research lies in its examination of the potential to enhance LLMs' Verilog code generation abilities through supervised fine-tuning. Employing a synthetic supervised fine-tuning dataset generated by LLMs themselves highlights the cyclical benefit of leveraging LLMs for both data generation and model enhancement. The notable results from various supervised fine-tuning experiments reveal significant improvements in model performance, evident in the enhanced pass rates on the VerilogEval benchmark.

The paper also assesses the impacts of different pretraining bases—comparing models pretrained on general text, multi-lingual code, and Verilog-specific data—and demonstrates that Verilog-focused pretraining and fine-tuning markedly benefit Verilog code generation tasks. This insight underscores the necessity of domain-specific approaches for optimizing LLM utility in specialized applications.

Evaluation and Results

The pass rate metrics employed offer a robust measure of functional correctness, focusing on the practical success of code completions. The comparative analysis of various model configurations, including the performance of LLMs like gpt-3.5 and gpt-4, places the research findings within the broader context of contemporary LLM capabilities. The models fine-tuned with the generated synthetic data exhibit performance on par with or exceeding that of prominent LLMs, substantiating the efficacy of the supervised fine-tuning approach proposed by the authors.

Future Directions and Concluding Remarks

While the VerilogEval benchmark provides a solid foundation for evaluating LLMs in hardware design contexts, the paper acknowledges broader avenues for future research. Integrating module instantiation capabilities and synthesizability checks would refine the assessment framework even further, aligning it more closely with practical hardware development processes. Moreover, extending the framework to assess Power, Performance, and Area (PPA) metrics could bridge the gap between code generation and real-world hardware design challenges.

In conclusion, the paper contributes substantially to the understanding and improvement of LLMs in the field of hardware design. By developing an open-source benchmark and demonstrating the impact of fine-tuning on model performance, it sets a benchmark for future endeavors aiming to harness machine intelligence in hardware design automation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models are few-shot learners,” Advances in neural information processing systems, vol. 33, pp. 1877–1901, 2020.
  2. OpenAI, “Gpt-4 technical report,” 2023.
  3. S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Kamar, P. Lee, Y. T. Lee, Y. Li, S. Lundberg et al., “Sparks of artificial general intelligence: Early experiments with gpt-4,” arXiv preprint arXiv:2303.12712, 2023.
  4. S. Wu, O. Irsoy, S. Lu, V. Dabravolski, M. Dredze, S. Gehrmann, P. Kambadur, D. Rosenberg, and G. Mann, “Bloomberggpt: A large language model for finance,” arXiv preprint arXiv:2303.17564, 2023.
  5. H.-C. Shin, Y. Zhang, E. Bakhturina, R. Puri, M. Patwary, M. Shoeybi, and R. Mani, “Biomegatron: Larger biomedical domain language model,” arXiv preprint arXiv:2010.06060, 2020.
  6. E. Bolton, D. Hall, M. Yasunaga, T. Lee, C. Manning, and P. Liang, “BioMedLM.” [Online]. Available: https://crfm.stanford.edu/2022/12/15/biomedlm.html
  7. R. Taylor, M. Kardas, G. Cucurull, T. Scialom, A. Hartshorn, E. Saravia, A. Poulton, V. Kerkez, and R. Stojnic, “Galactica: A large language model for science,” arXiv preprint arXiv:2211.09085, 2022.
  8. A. Mastropaolo, L. Pascarella, E. Guglielmi, M. Ciniselli, S. Scalabrino, R. Oliveto, and G. Bavota, “On the robustness of code generation techniques: An empirical study on github copilot,” arXiv preprint arXiv:2302.00438, 2023.
  9. E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese, and C. Xiong, “Codegen: An open large language model for code with multi-turn program synthesis,” ICLR, 2023.
  10. J. Blocklove, S. Garg, R. Karri, and H. Pearce, “Chip-chat: Challenges and opportunities in conversational hardware design,” arXiv preprint arXiv:2305.13243, 2023.
  11. K. Chang, Y. Wang, H. Ren, M. Wang, S. Liang, Y. Han, H. Li, and X. Li, “Chipgpt: How far are we from natural language hardware design,” arXiv preprint arXiv:2305.14019, 2023.
  12. S. Thakur, B. Ahmad, Z. Fan, H. Pearce, B. Tan, R. Karri, B. Dolan-Gavitt, and S. Garg, “Benchmarking large language models for automated verilog rtl code generation,” in 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE).   IEEE, 2023, pp. 1–6.
  13. Y. Lu, S. Liu, Q. Zhang, and Z. Xie, “RTLLM: An open-source benchmark for design rtl generation with large language model,” arXiv preprint arXiv:2308.05345, 2023.
  14. J. Wei, M. Bosma, V. Y. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A. M. Dai, and Q. V. Le, “Finetuned language models are zero-shot learners,” arXiv preprint arXiv:2109.01652, 2021.
  15. L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray et al., “Training language models to follow instructions with human feedback,” Advances in Neural Information Processing Systems, vol. 35, pp. 27 730–27 744, 2022.
  16. Y. Bai, A. Jones, K. Ndousse, A. Askell, A. Chen, N. DasSarma, D. Drain, S. Fort, D. Ganguli, T. Henighan et al., “Training a helpful and harmless assistant with reinforcement learning from human feedback,” arXiv preprint arXiv:2204.05862, 2022.
  17. Y. Wang, Y. Kordi, S. Mishra, A. Liu, N. A. Smith, D. Khashabi, and H. Hajishirzi, “Self-instruct: Aligning language model with self generated instructions,” arXiv preprint arXiv:2212.10560, 2022.
  18. C. Xu, Q. Sun, K. Zheng, X. Geng, P. Zhao, J. Feng, C. Tao, and D. Jiang, “Wizardlm: Empowering large language models to follow complex instructions,” arXiv preprint arXiv:2304.12244, 2023.
  19. Z. Luo, C. Xu, P. Zhao, Q. Sun, X. Geng, W. Hu, C. Tao, J. Ma, Q. Lin, and D. Jiang, “WizardCoder: Empowering code large language models with evol-instruct,” arXiv preprint arXiv:2306.08568, 2023.
  20. S. Gunasekar, Y. Zhang, J. Aneja, C. C. T. Mendes, A. Del Giorno, S. Gopi, M. Javaheripi, P. Kauffmann, G. de Rosa, O. Saarikivi et al., “Textbooks are all you need,” arXiv preprint arXiv:2306.11644, 2023.
  21. M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large language models trained on code.(2021),” arXiv preprint arXiv:2107.03374, 2021.
  22. J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan, E. Jiang, C. Cai, M. Terry, Q. Le et al., “Program synthesis with large language models,” arXiv preprint arXiv:2108.07732, 2021.
  23. D. Hendrycks, S. Basart, S. Kadavath, M. Mazeika, A. Arora, E. Guo, C. Burns, S. Puranik, H. He, D. Song et al., “Measuring coding challenge competence with apps,” arXiv preprint arXiv:2105.09938, 2021.
  24. S. Williams. (2023) The ICARUS verilog compilation system. [Online]. Available: https://github.com/steveicarus/iverilog
  25. K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for automatic evaluation of machine translation,” in Proceedings of the 40th annual meeting of the Association for Computational Linguistics, 2002, pp. 311–318.
  26. S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. B. Clement, D. Drain, D. Jiang, D. Tang, G. Li, L. Zhou, L. Shou, L. Zhou, M. Tufano, M. Gong, M. Zhou, N. Duan, N. Sundaresan, S. K. Deng, S. Fu, and S. Liu, “CodeXGLUE: A machine learning benchmark dataset for code understanding and generation,” CoRR, vol. abs/2102.04664, 2021.
  27. S. Kulal, P. Pasupat, K. Chandra, M. Lee, O. Padon, A. Aiken, and P. S. Liang, “Spoc: Search-based pseudocode to code,” Advances in Neural Information Processing Systems, vol. 32, 2019.
  28. S. Takamaeda-Yamazaki, “Pyverilog: A python-based hardware design processing toolkit for verilog hdl,” in Applied Reconfigurable Computing: 11th International Symposium, ARC 2015, Bochum, Germany, April 13-17, 2015, Proceedings 11.   Springer, 2015, pp. 451–460.
  29. A. Z. Broder, “On the resemblance and containment of documents,” in Proceedings. Compression and Complexity of SEQUENCES 1997 (Cat. No. 97TB100171).   IEEE, 1997, pp. 21–29.
  30. K. Lee, D. Ippolito, A. Nystrom, C. Zhang, D. Eck, C. Callison-Burch, and N. Carlini, “Deduplicating training data makes language models better,” arXiv preprint arXiv:2107.06499, 2021.
  31. A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi, “The curious case of neural text degeneration,” arXiv preprint arXiv:1904.09751, 2019.
  32. L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster, J. Phang, H. He, A. Thite, N. Nabeshima et al., “The pile: An 800gb dataset of diverse text for language modeling,” arXiv preprint arXiv:2101.00027, 2020.
  33. OpenAI. (2023) OpenAI models api. [Online]. Available: https://platform.openai.com/docs/models
  34. H. Yu, B. Shen, D. Ran, J. Zhang, Q. Zhang, Y. Ma, G. Liang, Y. Li, T. Xie, and Q. Wang, “Codereval: A benchmark of pragmatic code generation with generative pre-trained models,” 2023.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Mingjie Liu (26 papers)
  2. Nathaniel Pinckney (5 papers)
  3. Brucek Khailany (28 papers)
  4. Haoxing Ren (45 papers)
Citations (91)
Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com