Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
90 tokens/sec
Gemini 2.5 Pro Premium
54 tokens/sec
GPT-5 Medium
19 tokens/sec
GPT-5 High Premium
18 tokens/sec
GPT-4o
104 tokens/sec
DeepSeek R1 via Azure Premium
78 tokens/sec
GPT OSS 120B via Groq Premium
475 tokens/sec
Kimi K2 via Groq Premium
225 tokens/sec
2000 character limit reached

EEG-based Multimodal Representation Learning for Emotion Recognition (2411.00822v1)

Published 29 Oct 2024 in cs.CV, cs.AI, and cs.HC

Abstract: Multimodal learning has been a popular area of research, yet integrating electroencephalogram (EEG) data poses unique challenges due to its inherent variability and limited availability. In this paper, we introduce a novel multimodal framework that accommodates not only conventional modalities such as video, images, and audio, but also incorporates EEG data. Our framework is designed to flexibly handle varying input sizes, while dynamically adjusting attention to account for feature importance across modalities. We evaluate our approach on a recently introduced emotion recognition dataset that combines data from three modalities, making it an ideal testbed for multimodal learning. The experimental results provide a benchmark for the dataset and demonstrate the effectiveness of the proposed framework. This work highlights the potential of integrating EEG into multimodal systems, paving the way for more robust and comprehensive applications in emotion recognition and beyond.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.