Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring Large-Scale Language Models to Evaluate EEG-Based Multimodal Data for Mental Health (2408.07313v1)

Published 14 Aug 2024 in cs.HC

Abstract: Integrating physiological signals such as electroencephalogram (EEG), with other data such as interview audio, may offer valuable multimodal insights into psychological states or neurological disorders. Recent advancements with LLMs position them as prospective ``health agents'' for mental health assessment. However, current research predominantly focus on single data modalities, presenting an opportunity to advance understanding through multimodal data. Our study aims to advance this approach by investigating multimodal data using LLMs for mental health assessment, specifically through zero-shot and few-shot prompting. Three datasets are adopted for depression and emotion classifications incorporating EEG, facial expressions, and audio (text). The results indicate that multimodal information confers substantial advantages over single modality approaches in mental health assessment. Notably, integrating EEG alongside commonly used LLM modalities such as audio and images demonstrates promising potential. Moreover, our findings reveal that 1-shot learning offers greater benefits compared to zero-shot learning methods.

Citations (6)

Summary

We haven't generated a summary for this paper yet.